Color Image Encryption Based on Multiple Chaotic Systems
نویسندگان
چکیده
This paper proposed a novel color image encryption scheme based on multiple chaotic systems. The ergodicity property of chaotic system is utilized to perform the permutation process; a substitution operation is applied to achieve the diffusion effect. In permutation stage, the 3D color plain-image matrix is converted to a 2D image matrix, then two generalized Arnold maps are employed to generate hybrid chaotic sequences which are dependent on the plain-image’s content. The generated chaotic sequences are then applied to perform the permutation process. The encryption’s key streams not only depend on the cipher keys but also depend on plain-image and therefore can resist chosen-plaintext attack as well as known-plaintext attack. In the diffusion stage, four pseudo-random gray value sequences are generated by another generalized Arnold map. The gray value sequences are applied to perform the diffusion process by bitxoring operation with the permuted image row-by-row or column-by-column to improve the encryption rate. The security and performance analysis have been performed, including key space analysis, histogram analysis, correlation analysis, information entropy analysis, key sensitivity analysis, differential analysis etc. The experimental results show that the proposed image encryption scheme is highly secure thanks to its large key space and efficient permutation-substitution operation, and therefore it is suitable for practical image and video encryption.
منابع مشابه
A New Method for Encryption of Color Images based on Combination of Chaotic Systems
This paper presents a new method for encryption of color images based on a combination of chaotic systems, which makes the image encryption more efficient and robust. The proposed algorithm generated three series of data, ranged between 0 and 255, using a chaotic Chen system. Another Chen system was then started with different initial values, which were converted to three series of numbers from...
متن کاملImproved Encryption Algorithm of Images Based on Three-Dimensional Chaos
It describes an improved encryption algorithm of a three-dimensional image based on multiple chaotic systems. The algorithm uses a variety of chaotic encryption system to cut the image into three-dimensional matrix systems, in three-dimensional space do the image scrambling transformation, three-dimensional chaotic sequence output by multiple chaotic systems achieved three color pixel substitut...
متن کاملImage encryption based on chaotic tent map in time and frequency domains
The present paper is aimed at introducing a new algorithm for image encryption using chaotic tent maps and the desired key image. This algorithm consists of two parts, the first of which works in the frequency domain and the second, in the time domain. In the frequency domain, a desired key image is used, and a random number is generated, using the chaotic tent map, in order to change the phase...
متن کاملA stack-based chaotic algorithm for encryption of colored images
In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic logistic system. Then, the original image is divided into four subimages, and these four i...
متن کاملA combination chaotic system and application in color image encryption
In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016